首页> 外文OA文献 >Exactly solvable flat-foldable quadrilateral origami tilings
【2h】

Exactly solvable flat-foldable quadrilateral origami tilings

机译:完全可解的平面折叠四边形折纸

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider several quadrilateral origami tilings, including the Miura-oricrease pattern, allowing for crease-reversal defects above the ground statewhich maintain local flat-foldability. Using exactly solvable models, we showthat these origami tilings can have phase transitions as a function of creasestate variables, as a function of the arrangement of creases around vertices,and as a function of local layer orderings of neighboring faces. We use theexactly solved cases of the staggered odd 8-vertex model as well as Baxter'sexactly solved 3-coloring problem on the square lattice to study these origamitilings. By treating the crease-reversal defects as a lattice gas, we findexact analytic expressions for their density, which is directly related to theorigami material's elastic modulus. The density and phase transition analysishas implications for the use of these origami tilings as tunable metamaterials;our analysis shows that Miura-ori's density is more tunable than Barreto'sMars, for example. We also find that there is a broader range of tunability asa function of the density of layering defects compared to as a function of thedensity of crease order defects before the phase transition point is reached;material and mechanical properties that depend on local layer orderingproperties will have a greater amount of tunability. The defect density ofBarreto's Mars, on the other hand, can be increased until saturation withoutpassing through a phase transition point. We further consider relaxing therequirement of local flat-foldability by mapping to a solvable case of the16-vertex model, demonstrating a different phase transition point for thiscase.
机译:我们考虑了几种四边形的折纸拼贴,包括三浦折痕图案,这些折痕允许基态以上的折痕反转缺陷保持局部的可折叠性。使用完全可解的模型,我们证明这些折纸拼贴的相变可能是折痕状态变量的函数,顶点周围折痕排列的函数以及相邻面的局部层排序的函数。我们使用交错奇数8顶点模型的精确求解案例以及方格上Baxter精确求解的3色问题来研究这些origamitiling。通过将折皱缺陷视为晶格气,我们找到了其密度的精确解析表达式,这与折纸材料的弹性模量直接相关。密度和相变分析对于将这些折纸拼贴用作可调节的超材料具有影响;例如,我们的分析表明,Miura-ori的密度比Barreto的Mars更可调节。我们还发现,与达到相变点之前的折痕缺陷的密度相比,与分层缺陷的密度有关的可调性范围更广;取决于局部层有序特性的材料和机械性能将具有更大的可调性。另一方面,可以增加巴雷托火星的缺陷密度,直到不通过相变点就达到饱和为止。我们还考虑通过映射到16顶点模型的可解案例来放宽对局部平面可折叠性的要求,为此案例展示不同的相变点。

著录项

  • 作者

    Assis, Michael;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号